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Abstract 

This  paper  is  the  written  explanation  for a 
demonstration of the REE Project’s work to-date. The 
demonstration is intended to simulate an REE system that 
might exist on a Mars Rover, consisting of multiple COTS 
processors, a COTS network, a COTS  node-level 
operating  system,  REE  middleware, and an  REE 
application.  The  specific  application  pecforms  texture 
processing of images. It was chosen as a building block 
of automated geological processing that will eventually be 
used for both navigation and data processing. Because 
the COTS hardware is not  radiation  hardened, SEU- 
induced soft errors will occur, These errors are simulated 
in the demonstration by use of a software-implemented 
fault-injector, and are injected at a rate much higher than 
is  realistic for the  sake of viewer  interest.  Both  the 
application and the m,iddleware contain mechanisms for 
both detection of and recovery from these faults, and these 
mechanisms are tested by this very high fault-rate.  The 
consequence of the REE system being able to tolerate this 
fault rate while continuing to  process data is that the 
system will easily be able to handle the true fault rate. 

1. Introduction 

The  goal of the  Remote  Exploration  and 
Experimentation  (REE)  Project [ I  J is to  move 
supercomputing into space in a cost effective manner  and 
to allow the use of inexpensive,  state of the  art, 

commercial-off-the-shelf (COTS)  components  and 
subsystems in these space-based supercomputers. The 
motivation for the project is  the lack of bandwidth and 
long round trip communication delays which severely 
constrain current space science missions. Unlike typical 
radiation-hardened space-based systems, the use  of  COTS 
hardware will require the REE system to withstand 
relatively high rates of single event upset  (SEU) induced 
errors.  Depending on mission  environments  and 
component technologies, an  REE system will be required 
to withstand average fault rates of between 1 and 100 
SEU-induced  soft  errors per CPU-MB-day  with 
occasional peaks of up to 1000 soft errors per CPU-MB- 
day[2]. Unlike  traditional fault tolerant  computer systems, 
however, the REE computer need not provide 100% 
reliability, but is instead, as with  many sampled data or 
convergent-computation systems, allowed to occasionally 
fail in a computation.  Periodic  resets  to flush latent errors, 
and other techniques which provide  less than 100% 
availability,  are  also  permissible.  Further, the REE 
computer need not support hard real time or mission 
critical computation, as these tasks  can  be off-loaded to 
the  spacecraft  control  computer. 

The flexibility afforded by the above requirements 
allows the system to be optimized for high-performance, 
low-power, supercomputing rather than for “hard” fault 
tolerance,  Thus,  REE  seeks to maximize  simplex 
operation and minimize resource replication, redundant 
executions and  other  high-overhead strategies. (We should 
note  that  software-implemented  triple-modular 
redundancy (TMR)  and other high-overhead techniques 
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will be  developed  and  integrated  into  a  suite of 
operational options for flexible fault tolerance, but it is 
expected that these will not be the primary operating 
modes  of the system. It is,  however,  expected  that a small 
subset of nodes  may be called upon,  from time to time, to 
operate in a highly reliable and real  time  manner.) 

Another  project goal is  to allow scientists to develop 
science applications  in their laboratories and to easily  port 
the resulting software to the REE computer  with  minimal 
or no re-engineering for fault tolerance  or  for  the 
spacecraft computing environment. In addition to  COTS 
hardware, the project thus seeks to utilize a commercial 
operating system and  to support standard commercial 
application  development  tools  (compilers,  debuggers, etc.) 
and  methods to the  maximum  extent  practical. 

The REE computer architecture is a Beowulf-type’ E31 
parallel  processing  supercomputer  comprising a 
multiplicity of processing  nodes interconnected by a high 
speed, multiply redundant communication fabric. In the 
current instantiation of the system, dual Power PC 750 
based computational nodes containing 128MB of  main 
memory  and dual redundant Myrinet [4] interfaces are 
interconnected via a redundant Myrinet fabric. The node 
level operating system is Lynx [5] Operating System 
(OS), to which multiple versions of  MPI  [6] have been 
ported. The current system may contain up to 20 nodes 
(40 processors) and  is extensible to  at least 50 nodes  with 
a power:performance of better than 30MOPSNatt. The 
applications are written so that  they  may be automatically 
configured to execute on  up  to 50 processors with the 
system being informed,  by  the application, of the optimal 
number of processors for maximum throughput and the 
system assigning the number of processors available 
based  on  system status and operational constraints such  as 
available  power,  spares  availability and  mission  phase. 

There  are  currently 5 science teams  writing 
applications for potential future NASA missions which 
may incorporate the REE computer. To aid application 
developers, a library of fault-detection-enabled scientific 
subroutines for linear algebra and Fast-Fourier Transform 
(FFT) routines has been developed. Work is ongoing to 
determine the utility of an error-correction-enabled 
library. In addition,  continued  analysis of application  fault 
tolerance  requirements  and  determination of the 
applications’ native error tolerance is ongoing, as  is the 
development of a generalized taxonomy of scientific 
software structure and the applicability (and overhead 
costs) of various software-implemented fault-tolerance 
(SIFT) mechanisms to these  constructs. 

Beowulf-class computers  were  originally  defined  as  parallel  clusters of 
commodity hardware  and open-source  operating  systems and tools. 
This  definition  has  grown  to  include  most  clusters  composed  of 
personal  computer  central  processing  units (CPUs) and commodity 
operating systems and tools. 

While we are currently in the  process of expanding and 
documenting  guidelines  for  application  software 
developers, and while some of the SIFT strategy is the 
responsibility of the  applications  themselves, three system 
software  layers have thus far been defined to aid in 
achieving  the  required fault tolerance: 

A middleware layer which, conceptually, resides 
between  the OS and the application, 
a reliable communications layer which ensures that 
all system level communications are either error free 
or error-noted  and  which, conceptually, is viewed as a 
series of driver level enhancements to the node OS, 
and 
A global coordination system which manages the 
overall system. 

The combination of node operating system, reliable 
communications  software,  middleware, and global 
coordination layers are simply referred to as the REE 
System Software. Some of the responsibilities of the REE 
system software include: 

1 .Managing  system  resources  (maintaining  state 
information about each node and about the global 
system, performing system  resource  diagnostics, 
etc.). 

2.  Job scheduling (globally scheduling jobs across the 
system,  local  job  scheduling within the  node, 
allocation of resources  to jobs, etc.). 

3 .  Managing the scientific applications (launching the 
applications, monitoring the applications for failure, 
initiating  recovery  for  applications, etc.) 

The key components of the REE systems software are 
shown in Figure 1. 

The immediate  concern of the Applications  Manager is 
to oversee the execution of the scientific applications. As 
the applications represent the ultimate “customer” of the 
REE environment, efficiently supporting their required 
dependability  level is paramount.  The  Applications 
Manager monitors the science application for externally 
visible signs of faulty behavior as well as for messages 
generated internally by the applications requesting fault 
tolerance  services. 

Fault tolerance concerns for  the  REE  System Software 
must  also be addressed since these components ultimately 
ensure  the correct operation of the REE environment. 
Several of  its operations, such as scheduling and resource 
allocation are considered to be critical and therefore must 
be protected at all costs. We currently envision that these 
operations will therefore be run under the software- 
implemented TMR system previously discussed. Another 
module which must be protected is  the Applications 
Manager. This software module, which  is resident on 
each node engaged in applications processing, must be 
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Figure 1. REE system  software block  diagram 

Responsibilities  include: 
- Coordinate  application  recovery 
- Recover  from  node  failures 
- Interact  with  system  software 

Responsibilities  include: 
- Spawn  application  processes 
- Detect  process  failures 
- Detect  process  hangs  through 
application  heartbeats 

Figure 2. MPI application manager 

self-checking  to  ensure  correct  operation of this 
“middleware” layer, 

This  demonstration  will  show one of  REE’s scientific 
applications executing  under the Applications  Manager. 
Faults will be injected  into  the nodes executing  the 
application by a software  implemented fault injector, and 
the cooperative interactions between the application, the 
Applications Manager  and the COTS node operating 
system  to protect the integrity of the computation will be 
shown. 

2. Application  Manager 

The scientific  applications  executing  on an  REE 
platform are programmed  using  MPI [6] ,  a standardized 
messaging  interface used to implement  parallel 
applications.  These  are  typically  computationally 
intensive programs  that  perform  such actions as on-board 
image filtering and  signal processing. 

Core routines within  each application, such  as  matrix 
multiplication, employ algorithm-based fault tolerance 
(ABFT) to help protect against data faults. Internal ABFT 
techniques,  however, do not  mitigate the need for an 
external entity controlling the applications. Capabilities 
such  as  launching  application  processes,  terminating 
rogue  application  processes,  detecting  failures in 
application processes, and  migrating failed processes  to 
functioning  nodes are  some responsibilities that  must be 
relegated to an external  controlling  entity. The 
Application  Manager fulfills this role, REE currently uses 
the Chameleon application manager  written  by Prof. Ravi 
Iyer  et.  al  at the University of  Illinois [7] [8]. 

The Application  Manager  provides its fault tolerance 
services to the scientific MPI applications through ARMOR 
processes  (Adaptive  Reliable  Mobile  Objects of 
Reliability). ARMORS are built  from a library of reusable 
components  that  implement  specific  services and 
techniques for providing fault tolerance. An overriding 
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Figure 3. Rover texture analysis application 

Figure 4. Image response  to  several filters 

goal of the A R M O R  concept is to have a uniform 
architecture through which customized levels of fault 
tolerance can be achieved. For  REE,  the ARMORS have 
been customized to provide  oversight  to  MPI  applications. 

Because the target MPI applications often consist of 
several processes and because these applications cannot 
sacrifice performance, replication is not viewed as an 
acceptable approach for ensuring fault tolerance in an 
environment with constrained  processing  resources. 
Effective reporting and detection of errors is considered 
most  important, as the  target  MPI  applications  can tolerate 
occasional  restarts and rollbacks  to  previous  checkpoints. 

A challenge to the applications manager is to provide 
these error detection and recovery services to the target 
applications as transparently as possible. For the most 
part,  the  Applications  Manager  treats the MPI  application 
as a black box entity. Each MPI process is directly 

overseen by  an ARMOR executing on the same node, as 
shown  in Figure 2. Failures in  the  application are detected 
by the ARMOR and communicated to a high-level ARMOR 
that  coordinates  recovery. 

For  tolerating non-crash failures,  the  overseeing 
A R M O R  exposes a non-intrusive API (application 
programming interface) to the MPI application. Non- 
intrusive mean  that the MPI application only need be 
lightly instrumented with API calls; no fundamental 
redesign of the application is necessary. Through this 
interface,  the  application can communicate  vital 
information to the overseer ARMOR process so that the 
Application Manager  can better gauge the health of the 
application.  Examples  include  the  reporting  of 
correctable and uncorrectable  ABFT  errors  directly 
detected  by  the application, as  well as periodic updates  to 
the ARMOR concerning the application’s progress. Also 
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currently being investigated is applying some of the error 
detection  techniques  found  within ARMOR processes to the 
MPI  applications as well [7]. (These include such  things 
as control flow signature  checking on the process’s 
execution.) The ultimate goal of these techniques is to 
improve a process’s self-checking capabilities, and the 
MPI applications outfitted with these techniques would 
work in tandem  with  the  overseeing ARMOR to  accomplish 

Recovery of  an MPI application is complicated by  the 
fact that  current  MPI  implementations do not  allow single 
MPI  processes to be restarted; instead, all processes must 
be launched again to restart the application. For this 
reason, there exists a single high-level ARMOR named  the 
Fault Tolerance Manager (FTM) that coordinates the 
actions  among  all  other ARMORs (the ARMORs that directly 
oversee each  MPI process). The FTM is also responsible 
for handling node failures that affect one or more MPI 
applications. Whenever the FTM detects a node failure 
through its heart-beating mechanism, it must migrate all 
affected processes to another node, Selecting a spare 
node  is done with the assistance of Resource Manager, an 
REE System Software component that  is external to  the 
Applications Manager. Again, the MPI applications 
themselves are oblivious to the exact recovery actions 
taken  by the FTM  and other ARMORS. 

this  goal. 

3. REE Application  Demonstration 

We will  demonstrate one of the  REE  Science 
Applications, the Texture Analysis application developed 
by the Rover Science Team [9]. This parallel (MPI) 
application  segments  images  according  to  texture 
information. This is one of the methods that a Mars 
Rover  would  use to determine  rock  types. The application 
can  process  any  number of images. The processing steps 
for  each image are shown in Figure 3. First, a number of 
filters are applied to the  image. Each filter is a 
combination of a frequency and an orientation, as  shown 
in Figure 4. The results of each filter are a feature vector. 
The feature vector  measures the response of each pixel in 
the original image to the filter. After completing the 
filtering, clusters are segmented in the feature vector 
space. Then, each pixel is  painted to show the cluster to 
which  it  belongs, as seen in Figure 5. 

In order to test this application, two level of fault- 
protection  have been applied. The  first level  is 
Chameleon, used as the application manager. Once the 
application starts successfully, Chameleon ensures that it 
continues running  until it has completed. The application 
has been slightly modified  to  make heartbeat calls to  the 
Chameleon ARMORs,  and Chameleon is aware of  how 
often these heartbeats should occur. If one fails to occur 
within the response window,  Chameleon  assumes  that the 
application has  hung,  or  is  stuck in a loop, and restarts it, 
The application also writes out its status to a log file. It 
can then  read  this file when it is started or restarted to 
know what images  and  filters  have  already been 
processed, so that it can start on the first image or filter 
that has not yet  been completed. This “checkpointing” 
could be done at a finer level such as each FFT, but  this 
current  level  is  sufficient  for  testing and demonstration. 

The second level of fault-protection is inside the 
application, though the application code itself is  not 
modified. Instead, an ABFT [lo] version of the  FFT 
library is used. The ABFT versions of the FFT routines 
have the same calling sequences  as the basic routines, but 
they check to see if the FFT was completed successfully 
before returning. If the FFT was not successful, they retry 
once. If this retry is  also  unsuccessful,  the  ABFT  version 
of the FFT  calls  exit, which essentially promotes the 
problem to Chameleon to deal with by restarting the 
application on the current rock or filter. A flowchart of 
the  ABFT  operation  is  shown in Figure 6.  

The demonstration to be shown  will  use the application 
running on  an embedded system at the Jet Propulsion 
Laboratory (JPL). Through a series of scripts, output files 
will be transferred to the demonstration machine and 
displayed. An application-based fault injector named 
SWIFI (developed at JPL) will be used to insert random 
SEUs into memory  and registers at 10 to 100 times the 
expected fault rate on  the  Martian Surface [2], which  will 
exercise the  two existing levels of fault protection. The 
demonstration machine will compare the application 
outputs  from the code running  with  random  fault  injection 
to  outputs  previously  generated  from an unfaulted 
application. This will show the effects and overhead of 
the fault-protection layers, 



Figure 6. ABFT flowchart 

4. Conclusions 

The REE project  requires that dependability be 
provided  through software. Extensive error detection and 
recovery services are provided to the target applications 
through a variety of mechanisms  including  checkpointing, 
TMR, and  ABFT-enabled scientific subroutine libraries. 
The  applications  are built and tested without  fault- 
tolerance features, and  then  modified  to use substantially 
off-the-shelf fault-tolerance components. The initial 
application manager being used  by  REE  is built from a 
series of  ARMORS, and  is controlled by  the prototype REE 
system software. Through the application manager and 
system software, the application is able to tolerate process 
failures, process hangs, and node failures. The ABFT- 
enabled  libraries  are  essentially  transparent to the 
application and provide high fault  coverage of the 
mathematical routines themselves, though  not of logical 
or  arithmetic codes outside the library routines. Additional 
fault detection strategies will be required to protect the 
remainder of the application codes, the node operating 
system and system software. 

It is possible that, in addition to having A R M O R  
technology protect the application manager, comparable 
error detection and recovery techniques can be extended 
to the REE system software as well. Because the REE 
system software does not have the strict requirement of 
being completely off-the-shelf, additional customizations 
can be made to the  REE  processes  that  allow  them to take 
advantage of ARMOR technology. Specifically, the 
underlying ARMOR architecture can be embedded  into the 
REE processes, allowing REE system software to take 
advantage of the reconfigurable  error  detection and 
recovery services currently found in standalone ARMORS. 
It is the intent of the REE project that the integration of 
the  REE system software into  the overall SIFT layer  will 
result in a unified  approach  toward  providing 
dependability to  all facets of the REE software, including 
the  target scientific applications. 

Over the next 18 months, the REE pro-ject will 
continue the development of SIFT approaches for space- 
based parallel COTS supercomputing. The Project will 
culminate in the development of a final flight-capable 
prototype hardwarehoftware system  during the 2003-2004 
time  frame. 
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